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Abstract. We propose a road traffic cellular automata model suitable for an urban environment.
North, east, south and west car displacements are possible and road crossings are naturally
implemented as rotary junctions. We consider the traffic in a Manhattan-like city and study the
flow diagram and the car density profile along road segments. We observe that the length of
the car queues obeys a complex dynamics and is not uniform across the network. The street
length between two junctions and the turning strategies at rotaries are relevant parameters of the
model. Our results are also confirmed by fully continuous traffic simulations.

1. Introduction

Cellular automata models for road traffic have received a great deal of interest during the
past few years (see [1–5] for instance).

One-dimensional models for single-lane car motions are quite simple and elegant. The
road is represented as a line of cells, each of them being occupied by a vehicle or not. All
cars travel in the same direction (say to the right). Their positions are updated synchronously,
in successive iterations (discrete time steps). During the motion, each car can be at rest or
jump to the nearest-neighbour site, along the direction of motion. The rule is simply that a
car moves only if its destination cell is empty. This means that the drivers are short-sighted
and do not know whether the car in front will move or whether it is also blocked by another
car. Therefore the state of each cellsi is entirely determined by the occupancy of the cell
itself and its two nearest neighbourssi−1 and si+1. The motion rule can be summarized
by the following table, where all eight possible configurations(si−1sisi+1)t → (si)t+1 are
given:

(111)︸ ︷︷ ︸
1

(110)︸ ︷︷ ︸
0

(101)︸ ︷︷ ︸
1

(100)︸ ︷︷ ︸
1

(011)︸ ︷︷ ︸
1

(010)︸ ︷︷ ︸
0

(001)︸ ︷︷ ︸
0

(000)︸ ︷︷ ︸
0

. (1)

This cellular automaton rule turns out to be Wolfram’s rule 184 [6, 1].
This simple dynamics captures an interesting feature of real car motion: traffic

congestion. Suppose we have a low car densityρ in the system, for instance something
like

. . . 0010000010010000010. . . . (2)

This is a free traffic regime in which all the cars are able to move. The average velocity
〈v〉 defined as the number of motions divided by the number of cars is then

〈vf 〉 = 1 (3)

0305-4470/96/102325+12$19.50c© 1996 IOP Publishing Ltd 2325
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where the subscriptf indicates a free state. On the other hand, in a high-density
configuration such as

. . . 110101110101101110. . . (4)

only 6 cars out of 12 will move and〈v〉 = 1
2. This is a partially jammed regime.

If the car positions were uncorrelated, the number of moving cars (i.e. the number of
particle–hole pairs) would be given byLρ(1 − ρ), whereL is the system size. Since the
number of cars isρL, the average velocity would be

〈vuncorrel〉 = 1 − ρ . (5)

However, in this model, the car occupancy of adjacent sites is highly correlated and the
vehicles cannot move until a hole has appeared in front of them. The car distribution tries
to self-adjust to a situation where there is one space between consecutive cars. For density
less than half, this is easily realized and the system organizes to have one car every other
site.

Therefore, due to these correlations, equation (5) is wrong in the high-density regime.
In this case, since a car needs a hole to move to, we expect that the number of moving cars
simply equals the number of empty cells [1]. Thus, the number of motions isL(1− ρ) and
the average velocity in the jammed phase is

〈vj 〉 = 1 − ρ

ρ
. (6)

Yukawa and co-workers [1] have studied an interesting extension of the above model.
They consider a periodic system, with a special site which blocks incoming cars and releases
them with probabilityr, provided that the next site is free. Depending on the car density,
three different regimes are observed, namely (i) a free phase, (ii) a constant flow phase and
(iii) a jammed phase. A simple mean-field description of this system is possible and the
critical densities are found to be a function ofr.

Here we would like to extend this problem to the situation of a street network. This
requires us to define new cellular automata rules in order to deal with several cars entering
the same road junction. In addition, a driver’s decision at crossing (going straight or turning)
should be defined. As explained in section 2, our approach is to model a road intersection
as a rotary. Cars in the rotary have priority over those wishing to enter. Various strategies
can be considered for cars in a rotary to determine their behaviour. For instance, biased
decisions are easily implemented in order to mimic traffic lights. It is also possible to add
in the model a trip plan (i.e. some final destination to each vehicle). As a result, more
complex problems [7, 8] could be investigated in the framework of our approach.

In this model, road crossings are a bottleneck limiting traffic flow. However, as opposed
to [1], this bottleneck is not controlled by an external parameterr. The system responds
dynamically to the demand and selects its own flow.

In section 3, we will consider a mean-field description of our model and study how the
distance between two consecutive junctions affects the flow diagram.

As described in section 4, different turning strategies at rotaries are found to play a role.
Some of them are likely to produce junction deadlocks, a situation in which no more cars
can ever move at a crossing. The jammed region grows as more cars arrive and propagates
throughout the entire system. After a while, all cars get stuck and this results in a first-order
transition to a fully jammed state.

Finally, in section 5 we will also provide a detailed study of the car density profile
along streets.
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Our approach differs from other two-dimensional cellular automata traffic models [9–11]
in two respects. First, these models do not have the concept of streets. Cars can be anywhere
in a two-dimensional lattice and can typically move to any nearest-neighbour empty site.

Second, they have a rather primitive motion rule in order to avoid double occupancy.
They consider an alternate update of each directions of motion, as if there were synchronized
traffic lights at each lattice site, allowing horizontal motion at odd time steps and vertical
motion at even time steps.

In that sense, our approach is more realistic for describing traffic in a city. However,
in the limit where the distance between the rotaries becomes small (four lattice sites is the
smallest valid separation in our model), we obtain a flow pattern similar to those observed
in [9, 10].

2. The street network model

According to the basic ideas discussed in section 1, a cellular automaton rule of car motion
can be expressed by the following relation:

ni(t + 1) = nin
i (t)(1 − ni(t)) + ni(t)n

out
i (t) (7)

whereni(t) is the car occupation number (ni = 0 means a free site,ni = 1 means that
a vehicle is present at sitei). The quantitynin

i (t) represents the state of the source cell,
i.e that from which a car may move to celli. Similarly, nout

i (t) indicates the state of the
destination cell, i.e that the car at sitei would like to move to. Rule (7) means that the
next state of celli is 1 if a car is currently present and the next cell is occupied, or if no
car is currently present and a car is arriving.

Equation (7) can also be written as a balance equation. One has

ni(t + 1) − ni(t) = nin
i (1 − ni) − ni(1 − nout

i ) (8)

where the right-hand side is computed at timet . The quantity

jout
i = ni(1 − nout

i ) (9)

is the number of cars (0 or 1) leaving celli between iterationt and t + 1 (i.e those which
find nout empty). Similarly,

j in
i = nin

i (1 − ni) (10)

is the number of cars (0 or 1) entering celli between iterationt and t + 1. Taking an
ensemble average, equation (8) reads

ρi(t + 1) − ρi(t) = J in
i (t) − J out

i (t) (11)

whereρi(t) = 〈ni(t)〉 is the car density at sitei and timet andJ = 〈j〉 is the average flow.
This is the continuity (or car conservation) equation of our dynamics.

In a closed system, the total number of vehiclesNmvt (t) that have moved between two
consecutive iterations is

Nmvt (t) =
L∑

i=1

jout
i (t) =

L∑
i=1

j in
i (t) (12)

whereL is the system size (number of cells). Thus, in a homogeneous, stationary system,
the average car flowJ = J out

i = J in
i can be obtained as

J = Nmvt

L
= Nmvt

Ncar

Ncar

L
= ρ〈v〉 (13)
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Figure 1. Example of a traffic configuration near a junction. The four central cells represent a
rotary which is travelled counterclockwise. The gray levels indicate the different traffic lanes:
white is a northbound lane, light gray an eastbound lane, gray a southbound lane and, finally,
dark gray is a westbound lane. The dots labelleda, b, c, d, e, f , g andh are cars which will
move to the destination cell indicated by the arrows, as determined by the cell turn flagF . Cars
without an arrow are forbidden to move.

where〈v〉 is the average velocity defined in section 1. Note thatJ can also be interpreted
as the probability of a car motion.

In order to discuss further rule (7), we have to specify hownin
i andnout

i are defined in
terms of occupation numbers. For a simple one-dimensional periodic road, their expression
is very simple

nin
i = ni−1 nout

i = ni+1 (14)

and the microdynamics reduces exactly to rule 184 of Wolfram.
For a two-dimensional road network, these quantities can be generalized as follows. We

assume that horizontal roads consist of two lanes, one for eastward motion and the other for
westward motion. Similarly, vertical streets are composed of northbound and southbound
lanes. The question is to define the motion rule of the cars at a road junction. This can
be realized in a simple way if one assumes that a rotary is located at each crossing. Thus,
road junctions are formed by central points around which the traffic always moves in the
same direction. A vehicle in a rotary has the priority over any car entering.

The implementation we propose for this rule is illustrated in figure 1, where a four-
corner junction is shown. The four middle cells constitute the rotary. A vehicle on the
rotary (like b or d) can either rotate counterclockwise or exit. A local flagF is used to
decide the motion of a car in a rotary. IfF = 0, the vehicle (liked) exits in the direction
allowed by the colour of its lane (see the figure caption). IfF = 1, the vehicle moves
counterclockwise, likeb. The value of the local turn flagF can be updated according to the
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Figure 2. Traffic configuration after 600 iterations, for a car density of 30%. Streets are white,
buildings gray and the black pixels represent the cars. Situation (a) corresponds to an equally
likely behaviour at each rotary junction, whereas (b) mimics the presence of traffic lights. In
the second case, queues are more likely to form and the global mobility is less than in the first
case.

modelling needs: it can be constant for some amount of time to impose a particular motion
at a given junction, completely random, random with some bias to favour a direction of
motion, or may change deterministically according to any user-specified rule.

As in the one-dimensional rule, a vehicle moves only when its destination cellnout is
empty. Far from a rotary, the state of the destination cell is determined by the occupation
of the down-motion cell. This is also the case for a vehicle turning in the rotary. On the
other hand, a car wanting to enter the rotary has to check two cells because it does not have
priority. This check is made by looking at the turn flagF of the neighbouring cells with
priority.

For instance, carc cannot enter the rotary becauseb is going to move to the white cell.
The care cannot move either because it seesb (and cannot know whether or notb will
actually move). Cara, on the other hand, can enter because it sees thatd is leaving the
rotary and that the gray cell ahead is free.

Similarly, the incoming vehiclenin to a given cell is computed differently inside and
outside of the rotary. The light gray cell occupied by carb has two possible inputs: with
priority, it is the vehicle from the gray cell to the west; if this cell is empty, the input will
be the incoming lane, namely the car labellede.

Figure 2 shows typical traffic configurations in a Manhattan-like city. In figure 2(a), a
vehicle has a probability12 to exit at each rotary cell. In figure 2(b), the turn flagF has an
initial random distribution on the rotary. This distribution is fixed for the first 20 iterations
and then flips toF = 1− F for the next 20 steps and so on. In this way, a junction acts as
a traffic light, which for some amount of time allows only a given flow pattern (note that
right turns on red is permitted). We observed that the global traffic pattern is different in
the two cases: in (a), the car distribution is quite homogeneous along the streets. On the
other hand, in (b), cars queue at some junctions while some other streets remain empty.



2330 B Chopard et al

3. The mean-field solution

In this section, we derive a mean-field description of the traffic flow, in a steady-state
situation. We extend the derivation of [1] to our problem. The first quantities of interest
are theaveragecar densityρ and the average speed〈v〉 defined in section 1.

The first ingredient in the mean-field analysis is the fact that a rotary junction has a
maximum possible flow of cars. That is, the number of vehicles able to enter a rotary per
unit time cannot be larger than a given value determined by the rule of motion. Thus there
is a critical average densityρcrit

1 above which the traffic is not free but constrained by this
maximum rotary flow. As a result, car queues are formed at road junctions.

The second key observation is that, in the regime aboveρcrit
1 , the system self-organizes

in three different regions of fixed car densities: the queues that form before a junction, the
road segments after a junction, characterized by a low traffic density and the region inside a
rotary. The three densities associated with these different regions correspond to a jammed
densityρj , a free traffic densityρf and a rotary densityρr , respectively.

As the overall car number is increased,ρj , ρf and ρr remain constant: the result of
increasing the number of cars is to extend the length` of the car queues, without changing
the density in the three regions. The reason for fixed densities is that, due to the flow
diagram of rule 184 [1], there are only two possible densitiesρf andρj compatible with a
given traffic flowρ〈v〉, along a road segment. Thus, the only way to absorb an excess of
cars is to increase the size of the queue.

When one keeps adding cars in the system, there is a second critical average density
ρcrit

2 for which the length of some queues becomes larger than the distance separating two
consecutive street intersections. The up-traffic rotary output gets disturbed and, from a
maximum-flow traffic regime, one gets into a strongly jammed phase.

The values ofρf , ρj and ρr can be obtained by simple mean-field like arguments,
assuming that all queues are of the same length. From equation (11), we find that a
stationary state is characterized by a constant traffic flow. We will apply this condition in
the three regions discussed earlier and at the interface between these regions: the traffic
flow Jqueuein the queues equals the entering flowJ in

rotary of a certain direction in the rotaries
which, in turn, equals the flowJ out

rotary out of the rotaries and the flowJfree in the street just
after the junctions:

Jqueue= J in
rotary = J out

rotary = Jfree . (15)

From equations (13), (6) and (3), we obtain

Jqueue= ρj 〈vj 〉 = 1 − ρj and Jfree = ρf 〈vf 〉 = ρf (16)

from which we conclude that

ρf = 1 − ρj . (17)

The expressions forJ in
rotary andJ out

rotary (which are the probabilities of entering and exiting the
intersection, respectively) depend on the rule of motion in a rotary. In the implementation
we have discussed in section 2, the motion of several cars in a rotary is strongly correlated.
Since two cars cannot occupy simultaneously two consecutive cells of the rotary and move,
the stationary solution is, on average, two cars per rotary, in a diagonal configuration. Thus,

ρr = 1
2 . (18)

Since a car keeps turning in a rotary with probability1
2, the probability of exiting a rotary

is

J out
rotary = 1

2ρr . (19)
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Note that the probability 1−ρf of having a free cell just outside the rotary does not multiply
the right-hand side of this formula because the two events are not independent. Indeed, due
to the alternation of vehicle and hole in a rotary, the exit of a rotary is always free in the
maximum flow regime.

Likewise, entering a rotary (say from the left) is possible when the lower left cell of
the rotary is empty and the vehicle in the upper left cell (if any) wants to exit the rotary
westward. Thus, we have

J in
rotary = 1

2(1 − ρr) . (20)

As before, the occupation probabilityρj of the cell just before the junction does not appear
because, due to the correlations, at the time the entry is possible, there is always a car
waiting for this.

From equations (15) and ( 17), we then conclude that

ρf = 1
4 ρj = 3

4 ρr = 1
2 . (21)

In this mean-field description, the maximum flow regime lasts until the tail of the car
queue reaches the up-traffic junction. Assuming that the queues are of the same length`

along all road segments and that the separation between two consecutive junctions isL (the
network period), we can relate [1] the average car densityρ to ` by the relation

4(L − 2 − `)ρf + 4`ρj + 4ρr = 4Lρ . (22)

Equation (22) simply reflects the fact that the total number of cars is distributed in three
regions: queues of length̀ and densityρj , free traffic segments of lengthL − ` − 2 and
densityρf and rotaries of size four and densityρr . For this calculation, we have considered
a basic network element, namely one rotary with two entering and two exiting lanes.

Thus` is given by

`

L
= ρ − ρf

ρj − ρf

+ 2ρf − ρr

(ρj − ρf )L
. (23)

In the case of largeL, we can approximate this result as

`

L
= ρ − ρf

ρj − ρf

. (24)

Equation (24) provides a way to determine the critical densitiesρcrit
1 andρcrit

2 . For ρ < ρf ,
` is negative, which should be interpreted in the sense that no queue is formed. This is the
free traffic regime. Thus,ρcrit

1 = ρf = 1
4 and the average velocity is〈v〉 = 1, independent

of ρ.
On the other hand, forρf < ρ < ρj , car queues form but their lengths are smaller than

the distance between successive intersections. This is the maximum flow regime. In this
case, we haveρ〈v〉 = J = constant= 1

4, that is〈v〉 = 1/(4ρ).
Finally, for ρ > ρj = ρcrit

2 , the queues reach their maximum lengthL and the rotary exits
are hindered. This is the strongly jammed traffic regime. The traffic velocity is governed
by the motion of holes and obeys (6), namely〈v〉 = (1 − ρ)/ρ.

If 〈v〉 is taken as the order parameter, both of these transitions are second order. Actual
simulations of our cellular automata street network are well described by the above mean-
field description, provided the turning decision at rotaries is random and not time-correlated.
This means that a driver will not stick to a decision: if a rotary exit is blocked at timet ,
he might very well decide to keep turning in the rotary at timet + 1 (figure 3(a) shows the
velocity-density diagram, for this case).
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Figure 3. Average velocity versus average density for the cellular automata street network, for
(a) time-uncorrelated turning strategies and (b) a fixed driver’s decision. The different curves
correspond to different distancesL between successive road junctions. The broken curve is
the mean-field prediction. Junction deadlock is likely to occur in (b), resulting in a completely
jammed state.

We have considered various road spacings for our measurements (i.e the distanceL

separating consecutive intersections). The larger the spacing the better the agreement with
the mean-field description. Clearly, finite-size effects play an important role and are certainly
not negligible in urban traffic since the road segments cannot be considered as infinite.

However, as the junction spacing decreases, we observe in figure 3(a) a different
behaviour: whereas the features of a network of streets, in the limit of largeL, is quite
similar to one single lane with controlled flow (see [1]), the case of very smallL (L = 4
is the smallest distance allowed by the model) yields a linear dependence of〈v〉 upon ρ.
This behaviour can be understood as follows: the car displacement along a line results in
a very correlated motion, as discussed in section 1. In the case of short road segments,
the locations of cars are little correlated because they rarely follow each other. Therefore,
the number of cars moving at timet can be approximated by (5). The behaviour of our
model for smallL has similarities with the one obtained by Cuestaet al in [10], which is
expected sinceL → 1 would correspond to so-called two-dimensional traffic. However, in
the situation described here, we do not observe a first-order phase transition, as in [10]. We
shall return to this question in the next section.

4. Junction deadlocks

The results presented in the previous section assume that drivers are free to change their
mind if an intersection is momentarily locked. As a result, the load on each road segment
is well balanced and, as long as there is a hole in the network, motion will occur.

A more realistic strategy at a road junction is to stick to the first decision (which is still
random) and stop until the destination cell is freed. This modification of the car behaviour
at a rotary has a dramatic consequence in our model (see figure 3(b)). Suppose that four
cars simultaneously enter an empty rotary and all decide to continue in this rotary for their
next move. But, since there is no hole in the rotary, no motion is possible. If driver’s
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decisions are frozen, there is a deadlock at the intersection, from which one cannot recover.
Further incoming cars will queue up and gradually decrease the network capacity until
complete jamming is reached. Therefore, there is an abrupt jump in the velocity diagram,
from 〈v〉 = 〈v(ρ)〉 to 〈v〉 = 0. This can be interpreted as a first-order phase transition, from
partial to complete jamming.

However, although the probability of such a junction deadlock increases with the car
densities, it is non-zero even for smallρ. Therefore, the flowing regime in which cars can
move is not stable: waiting long enough will eventually yield such a blocking event. But
as long as this event does not take place, a well defined relation between〈v〉 and〈ρ〉 holds.
In this sense, we may say that the flowing regime ismetastable.

For a given observation time (we have typically considered 2000 simulation steps),
complete jamming almost certainly occurs if the density is above some critical value. As
the road segments between intersections act as car reservoirs, absorbing a local traffic excess,
this critical value is higher asL grows.

There is, however, a way to reduce the risk of a junction deadlock considerably. We
can force the vehicles in a rotary to keep moving and turning until the exit they want is free.
Thus, four cars at the same junction do not block it. This dynamics is yet not completely
deadlock free: one can exhibit configurations in which the four rotaries around the same
building are mutually locked (all cars willing to go to the jammed exit). As in real traffic,
such a situation cannot evolve unless a driver accepts a change of his destination. In our
numerical simulations, however, complete jamming has almost never been observed in a
finite time interval, with this new strategy.

According to this new behaviour, we modify the rule of motion in a rotary: either a car
exits or it turns around. Consequently, two cars can follow each other in a rotary without
leaving a hole between them. As a result, the occupation of the cell right before and right
after the rotary is no longer correlated with the location of cars in the rotary. Equation (15)

Figure 4. Fixed decision model, with modified rotary motion preventing deadlocks. (a) Car
density in the three traffic regions (free regions, queues and rotaries), as a function of the average
density, for a road spacingL = 256. (b) Traffic flow and average velocity for two different
road spacings.
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has to be rewritten with

J in
rotary = ρj

1 − ρr

2
J out

rotary = (1 − ρf )
ρr

2
(25)

and its solution is

ρj = 4
5 ρr = 1

2 ρf = 1
5 . (26)

Thus, the strategy of fixed decision obeys the same mean-field description as discussed in
section 3. The critical valuesρcrit

1 andρcrit
2 are just renormalized to the new values ofρf

andρj given in equation (26).
These mean-field predictions have been checked numerically in figure 4. As expected,

we observe three regimes: free traffic, maximum flow and strongly jammed. The vehicles
are distributed in the three regions discussed previously (before, after and inside a junction),
each with a specific density. In addition, the numerical simulations show good agreement
with the mean-field location of the first transition (from the free regime to the maximum
flow regime), atρcrit

1 = ρf = 0.2. This is, however, not the case of the second transition at
ρcrit

2 = ρj = 0.8, which clearly depends on the road spacingL.

5. Queue density profile

The reason why the second transition is not well described by the mean-field approximation
is that the valuè given by equation (24) fluctuates considerably and some queues grow at
the expense of the others. The traffic is not distributed uniformly and some road segments
are much more loaded than the others. The load distribution changes with time, as a result
of the ‘microscopic’ fluctuations. A complex dynamics of car queues length is observed
over the network, as illustrated in figure 5.

Because of these fluctuations, some road junctions get disturbed by a down-traffic queue
growing up to sizeL, even for average densitiesρ < ρj . As a result, the maximum flow

Figure 5. Fluctuation of car queue length, for the rule with fixed turning decision. Buildings
are the large gray square blocks and streets are shown in white. Car queues are indicated by the
black lines. The gray tails of the queues are due to density variation during the time average.
The same network portion is represented on the left and on the right, at two different timest1
and t2 > t1. The traffic load distribution has changed from one configuration to the other.
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Figure 6. Time and space average of the car
density profile along the segments of the street
network. The road spacing isL = 256 and
the system is periodic with one rotary located at
x = 0. By space average, we mean that we have
summed the contributions of the four traffic lanes
(north, south, east and west). Each of the eight
curves correspond to a different average density,
namelyρ = 0.1, 0.2, . . . , 0.8.

regime ends much earlier than expected, i.e. for a critical density smaller thenρcrit
2 . This

effect is amplified as the rotaries get closer to each other because the road segments are
not long enough to absorb the fluctuations. Equation (24) predicts a ratio`/L independent
of L. Our observation is that this is clearly wrong when each road segment is considered
separately (the 1/L correction in equation (23) is too small to explain the importance of the
effect). However, the cumulative length of all queues seems to obey equation (24) well [12].

In order to provide a more quantitative description of these fluctuations, we have
measured the average density profile between two consecutive junctions. Over a long period
of time and for each location along the road segments, we have observed the average cell
occupation. Since the density isρj in a queue andρf outside, our measurement indicates
the portion of time a given site belongs to the queue. These results are summarized in
figure 6. The dependence ofρcrit

2 uponρ andL is still under investigation.
The situation described in figure 6 has only one intersection (crossing of two roads).

In the case of several rotaries, we obtain the same qualitative behaviour except that some
symmetry breaking is observed among the junctions. There is a checkerboard pattern, which
makes the ‘white’ rotaries have a different density profile than the ‘black’ ones. However,
a more detailed analysis is required before we can confirm the generality of this effect.

6. Conclusions

A first conclusion is that for a road spacingL in the range of what is expected for an urban
area, the behaviour of our model has more similarities with the one-dimensional traffic
model of [1] than with the two-dimensional cellular automata models of [9, 10]. In that
sense, we may say that a street network is not a fully two-dimensional dynamics. The
length of the road segments between the junctions can absorb local traffic excess. Queues
are formed and correlations build up. Our rotaries also act as a flow capacity limitation
but, in contrast with [1], this limitation results from the rule of motion and is not enforced
externally. Fixed capacity devices result in three dynamical regimes (free traffic, maximum
flow and strongly jammed).

However, the behaviour of a street network exhibits new features as compared with
single-lane models: metastability of the flow diagram and junction deadlocks (also called
gridlocks). The resulting first-order phase transition is similar to what is observed in2D

traffic models.
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In addition, the quantityL has a direct impact on the behaviour of the system, for large
densities (for low densities it causes finite-size effects). Also, the overall dynamics is quite
sensitive to the driver’s behaviour at rotaries for choosing his destination. Note that our
model can be extended so as to give a different trip plan to each vehicle.

Another observation is that, although the road network is homogeneous and all drivers
similar, the traffic load is not distributed uniformly in space and time. Some regions get
more congested than others and some junctions get clogged, thus reducing the overall traffic
flow more than expected from the mean-field calculations.

The structure in queues that play an important role in our model suggests that a more
macroscopic level of description of traffic in urban areas could be envisaged directly with
the quantities̀ ij , defined as the length of the queues between junctioni andj . This may
lead to more effective numerical simulations [7].

RecentCA traffic models [3, 8] consider more sophisticated rules. Multispeed car motion
is found to be a crucial ingredient to describe highway traffic and phenomena such as start–
stop waves. However, for urban traffic, these features are less important and interactions at
road junctions are certainly the dominant effect.

This observation is confirmed by other microtraffic simulations we have investigated.
In addition to theCA model, we have developed [12] an off-lattice continuous traffic model
in which each vehicle can have any velocity, position and acceleration within a given range.
This simulator has been implemented on a Connection Machine CM-200 and proceeds along
the same lines as the simulator PARAMICS [13], except for the implementation details.

In a situation similar to that studied with ourCA model, we observe the same emergent
behaviour as described in this paper. Of course, the continuous microtraffic simulator
provides more flexibility to study fine aspects, such as the role of the speed limit. However,
the macroscopic features of theCA model are well reproduced.
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[11] Nagatani T 1995J. Phys. Soc. Japan64 1421–30
[12] Queloz P A 1995 Mod̀ele de traffic routier et simulateur massivement parallèle Master’s ThesisUniversity
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